Benchmarking two-photon absorption cross sections: performance of CC2 and CAM-B3LYP.

نویسندگان

  • Maarten T P Beerepoot
  • Daniel H Friese
  • Nanna H List
  • Jacob Kongsted
  • Kenneth Ruud
چکیده

We investigate the performance of CC2 and TDDFT/CAM-B3LYP for the calculation of two-photon absorption (TPA) strengths and cross sections and contrast our results to a recent coupled cluster equation-of-motion (EOM-EE-CCSD) benchmark study [K. D. Nanda and A. I. Krylov, J. Chem. Phys., 2015, 142, 064118]. In particular, we investigate whether CC2 TPA strengths are significantly overestimated compared to higher-level coupled-cluster calculations for fluorescent protein chromophores. Our conclusion is that CC2 TPA strengths are only slightly overestimated compared to the reference EOM-EE-CCSD results and that previously published overestimated cross sections are a result of inconsistencies in the conversion of the TPA strengths to macroscopic units. TDDFT/CAM-B3LYP TPA strengths, on the other hand, are found to be 1.5 to 3 times smaller than the coupled-cluster reference for the molecular systems considered. The unsatisfactory performance of TDDFT/CAM-B3LYP can be linked to an underestimation of excited-state dipole moments predicted by TDDFT/CAM-B3LYP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benchmarking two-photon absorption with CC3 quadratic response theory, and comparison with density-functional response theory.

We present a detailed study of the effects of electron correlation on two-photon absorption calculated by coupled cluster quadratic response theory. The hierarchy of coupled cluster models CCS, CC2, CCSD, and CC3 has been used to investigate the effects of electron correlation on the two-photon absorption cross sections of formaldehyde (CH2O), diacetylene (C4H2), and water (H2O). In particular,...

متن کامل

Intermolecular charge transfer enhances two-photon absorption in yellow fluorescent protein.

We present a quantum chemical study of the two-photon absorption (TPA) properties of yellow fluorescent protein (YFP), a mutant of the extensively studied green fluorescent protein. The aromatic chromophore of YFP has a π-stacking interaction with the aromatic ring of a tyrosine residue (Tyr203) in a parallel-displaced structure with a distance of about 3.4 Å. We study the TPA spectrum of the π...

متن کامل

Origin-independent two-photon circular dichroism calculations in coupled cluster theory.

We present the first origin-independent approach for the treatment of two-photon circular dichroism (TPCD) using coupled cluster methods. The approach is assessed concerning its behavior on the choice of the basis set and different coupled cluster methods. We also provide a comparison of results from CC2 with those from density functional theory using the CAM-B3LYP functional. Concerning the ba...

متن کامل

Calculations of two-photon charge-transfer excitations using Coulomb-attenuated density-functional theory.

In this work, we show that an implementation of Coulomb-attenuated density-functional theory leads to considerably better prospects than hitherto for modeling two-photon absorption cross sections for charge-transfer species. This functional, which corrects for the effect of poor asymptotic dependence of commonly used functionals, essentially brings down the widely different results for larger c...

متن کامل

The origin of the absorption spectra of porphyrin N- and dithiaporphyrin S-oxides in their neutral and protonated states.

meso-Tetraphenylporphyrin N-oxide (1) and meso-tetraphenyl-21,23-dithiaporphyrin S-oxide (3) possess optical spectra that are distinctly different from their parent porphyrins, meso-tetraphenylporphyrin (2) and meso-tetraphenyl-21,23-dithiaporphyrin (4), respectively. The hyperporphyrin spectra were reproduced and classified using TD CAM-B3LYP and SCS-CC2 computational methods. Calculations rev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 29  شماره 

صفحات  -

تاریخ انتشار 2015